
Tutorial: Concurrent Data
Structures in RDMA

Vitaly Aksenov*, Amanda Baran, Alex Clevenger, Roberto Palmieri,

Yaodong Sheng, Michael Spear

Scalable Systems & Software Research Group

Lehigh University; City, University of London, UK (*)

The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

• Allows a process to directly interact with
memory on another node

• Kernel bypass technique
• Sub-microsecond latencies
• > 400 Gbps bandwidth
• GPU integration
• Applications: LLM Inference, HPC,

Realtime/Exascale/Datacenter Computing

The Rise of RDMA

2

Remote

Direct

Memory

Access

The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

RDMA Ecosystem & RNIC Performance

3The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

A shift from legacy network programming

4

TCP/IP RDMA

• Memory and channel semantics
• Two-sided operations

• Send/Receive
• One-sided operations

• Read/Write/CAS

• Channel semantics
• Implemented by kernel
• Send/Receive

programming model
Slow!

The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

Primitives

5

A Traditional View of Distributed Systems

Distributed
systems

Message-passingDistributed

Shared-memoryMulticore

Communication Model Building Blocks ImplementationTarget Deployment

The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

Primitives

6

A Modern View of Distributed Systems

Distributed
systems

Message-passingDistributed

Shared-memoryMulticore

Target Deployment Communication Model Building Blocks Implementation

Two-sided
(send/receive)

RDMA

RDMA
read/write/CAS

The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

7

Shared-memory application

RDMA one-sided operations: READ/WRITE/CAS

Distributed application!

Problem solved!

The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

Problem !solved

8

Shared-memory application

RDMA one-sided operations: READ/WRITE

Distributed application!

What if the system
size grows beyond

tens of nodes?

What if writers don’t
wait for the

completion’s
notification?

How do we reclaim
remote memory

efficiently?

How do we
implement wait-free
RDMA operations?

What if processes
access RDMA
memory with

shared-memory API?

Is topology
important?

What if we have
arbitrary-sized

objects?

The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

Process Roles in the RDMA Model

9

• Local processes access memory
using the underlying memory
subsystem (native access)

• RDMA loopback allows local
processes to access memory
through the RNIC (remote access)

• Remote processes utilize network +
RNIC + PCIe bus + mem. subsystem
(remote access)

• Kernel bypass

IMC: Integrated memory controller
PCIe: Peripheral Component Interconnect Express
RNIC: RDMA-capable network interface controller
RoCE: RDMA over Converged Ethernet

The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

Setting up programs using RDMA

10The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

Establish
Protection

Domain

Create
RDMA

Context

Register
Memory

Create
Resources
(e.g., QPs)

Handshake
w/ Remote

Nodes

RDMA is
Available

Handling RDMA One-sided Operations

•

11

 2 31

4

5
67

1

2 3

4 5

6 7

The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

What's Remus and why we need it

bool postWRandPollCQ(const std::vector<struct ibv_mr*>& sge, struct ibv_cq* cq) {
 struct ibv_send_wr rdma_wr, send_wr, *bad_wr = nullptr;
 memset(&send_wr, 0, sizeof(send_wr));
 rdma_wr.wr.rdma.remote_addr = peer_memory_region->addr;
 rdma_wr.wr.rdma.rkey = peer_memory_region->rkey;
 rdma.wr.opcode = IBV_WR_RDMA_READ;
 struct ibv_sge* send_sge = calloc(sizeof(struct ibv_sge), sge.size());
 for (int i = 0; i < sge.size(); i++) {
 send_sge[i].addr = (uintptr_t) sge[i].addr;
 send_sge[i].length = sge[i].length;
 send_sge[i].lkey = sge[i].lkey;
 }
 send_wr.sg_list = send_sge;
 send_wr.num_sge = sge.size();
 send_wr.wr_id = 200;

 // Post send WR with desired op code (READ/WRITE/SEND/RECV)
 send_wr.opcode = IBV_WR_RDMA_READ;
 send_wr.send_flags = IBV_SEND_SIGNALED;
 send_wr.next = nullptr;
 auto result = ibv_post_send(queue_pair_, &send_wr, &bad_wr);
 free(send_sge);

 // Poll CQ
 struct ibv_wc wc;
 int result;
 do {
 result = ibv_poll_cq(cq, 1, &wc);
 } while (result == 0);
 if (result > 0 && wc.status == ibv_wc_status::IBV_WC_SUCCESS) {
 return true;
 }
 printf("Poll failed with status %s (work request ID: %llu)\n",
ibv_wc_status_str(wc.status), wc.wr_id);
 return false;
}

12

cThread->Read(ptr, obj);

Without Remus With Remus

Open Distributed Computing Questions

13The 37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25)

● Caching (hardware cache won't help as it does on shared memory)
● Synchronization (in the absence of global atomicity)
● Fault tolerance
● Security
● Topology Policies (how to build & how to use)
● Memory Allocation (& allocation policies)
● And many more :)

Our RDMA Contributions
● [CGO 2019] Understanding RDMA Behavior in NUMA Systems,

J. Nelson and R. Palmieri
● [ICDCS 2020] On the Performance Impact of NUMA on One-sided

RDMA Interactions, J. Nelson and R. Palmieri
● [SPAA 2024] Brief Announcement: ROMe: Wait-free Objects for

RDMA, J. Nelson-Slivon, R. Yankovich, A. Hassan, and R. Palmieri
● [SPAA 2024] ALock: Asymmetric Lock Primitive for RDMA Systems,

A. Baran, J. Nelson-Slivon, L. Tseng, and R. Palmieri
● [SRDS 2025] On Designing High-Performance Distributed Shared

Memory Systems with RDMA, A. Baran and R. Palmieri
● More in progress :)

14

Thanks! & Questions?

15

https://github.com/sss-lehigh

https://sss.cse.lehigh.edu/

